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Abstract  16 

Zooplankton play an important role in global biogeochemistry and their secondary production 17 

supports valuable fisheries of the world’s oceans. Currently, zooplankton abundances cannot be 18 

estimated using remote sensing techniques. Hence, coupled physical-biogeochemical models 19 

(PBMs) provide an important tool for studying zooplankton on regional and global scales. 20 

However, evaluating the accuracy of zooplankton abundance estimates from PBMs has been a 21 

major challenge as a result of sparse observations. In this study, we configure a PBM for the Gulf 22 

of Mexico (GoM) from 1993-2012 and validate the model against an extensive combination of in 23 

situ biomass and rate measurements including total mesozooplankton biomass, size-fractionated 24 

mesozooplankton biomass and grazing rates, microzooplankton specific grazing rates, surface 25 

chlorophyll, deep chlorophyll maximum depth, phytoplankton specific growth rates, and net 26 

primary production. Spatial variability in mesozooplankton biomass climatology observed in a 27 

multi-decadal database for the northern GoM is well resolved by the model with a statistically 28 

significant (p < 0.01) correlation of 0.90.  Mesozooplankton secondary production for the region 29 

averaged 66 + 8 mt C yr-1 equivalent to approximately 10% of NPP and ranged from 51 to 82 mt 30 

C yr-1. In terms of diet, model results from the shelf regions suggest that herbivory is the dominant 31 

feeding mode for small mesozooplankton (<1-mm) whereas larger mesozooplankton are primarily 32 

carnivorous.  However, in open-ocean, oligotrophic regions, both groups of mesozooplankton have 33 

proportionally greater reliance on heterotrophic protists as a food source.  This highlights the 34 

important role of microbial and protistan food webs in sustaining mesozooplankton biomass in the 35 

GoM which serves as the primary food source for early life stages of many commercially-36 

important fish species, including tuna.   37 
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1. Introduction  38 

Within marine pelagic ecosystems zooplankton function as an important energy pathway between 39 

the base of the food chain and higher trophic levels such as fish, birds, and mammals (Landry et 40 

al., 2019; Mitra et al., 2014). Zooplankton also have a well-documented impact on chemical 41 

cycling in the ocean (Buitenhuis et al., 2006; Steinberg and Landry, 2017; Turner, 2015).The 42 

ecological roles of zooplankton, however, are varied and taxon-dependent. Globally, protistan 43 

grazing is the largest source of phytoplankton mortality, accounting for 67% of daily 44 

phytoplankton growth (Landry and Calbet, 2004). Protistan zooplankton function primarily within 45 

the microbial loop leading to efficient nutrient regeneration in the surface ocean (Sherr and Sherr, 46 

2002; Strom et al., 1997). By contrast, mesozooplankton contribute significantly less to 47 

phytoplankton grazing pressure consuming an estimated 12% of primary production (PP) globally 48 

(Calbet, 2001) yet strongly impact the biological carbon pump. In addition to top-down grazing 49 

pressure on phytoplankton, mesozooplankton impact the biological carbon pump through 50 

production of sinking fecal pellets, consumption of sinking particles and active carbon transport 51 

during diel vertical migration (Steinberg and Landry, 2017; Turner, 2015). While contributing 52 

notably less to phytoplankton grazing pressure than protists, herbivorous mesozooplankton are 53 

important to study as they are often associated with shorter food chains that enable efficient energy 54 

transfer from primary producers to higher trophic levels of particular societal interest such as 55 

economically valuable fish species and/or their planktonic larvae.  56 

Zooplankton populations have been identified as being vulnerable to impacts of a warming ocean 57 

(Caron and Hutchins, 2013; Pörtner and Farrell, 2008; Straile, 1997), through both impacts of 58 

temperature on metabolic rates (Ikeda et al., 2001; Kjellerup et al., 2012) and thermal stratification-59 

driven alterations in food web structure (Landry et al., 2019; Richardson, 2008). Studies aimed at 60 

monitoring and predicting zooplankton populations are therefore critical to understanding the first-61 

order effects of a warming ocean on marine ecosystems given the importance of secondary 62 

production and the impact zooplankton have on biogeochemical cycling. Despite their importance, 63 

historically zooplankton have been sampled with limited temporal and spatial resolution. While 64 

remote sensing has provided an enormous advancement in observing ocean hydrodynamics and 65 

phytoplankton variability, zooplankton abundance cannot currently be estimated from space. Thus 66 

numerical models provide a unique oceanographic research tool for studying zooplankton on basin 67 

and global scales (Buitenhuis et al., 2006; Sailley et al., 2013; Werner et al., 2007). Evaluating the 68 
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accuracy of zooplankton abundance estimates from numerical models, such as three-dimensional 69 

physical-biogeochemical ocean models (PBMs), has been a major challenge in previous modeling 70 

studies as a result of sparse ship-based observations in most regions (Everett et al., 2017). 71 

Consequently, zooplankton dynamics have been under studied and under validated in PBMs. 72 

Instead, PBMs are typically validated predominately against surface chlorophyll (Chl) from 73 

remote sensing (Doney et al., 2009; Gregg et al., 2003; Xue et al., 2013).   74 

In most marine environments, phytoplankton net growth rates and hence biomass are determined 75 

primarily by the imbalance between phytoplankton growth and zooplankton grazing (Landry et 76 

al., 2009). PBMs can accurately predict phytoplankton standing stock (i.e. compare well with 77 

satellite Chl observations) despite being driven by the wrong underlying dynamics leading to major 78 

errors in model estimates of secondary production and nutrient cycling (Anderson, 2005; Franks, 79 

2009). For instance, parameter tuning using only surface Chl as a validation metric can allow broad 80 

patterns in phytoplankton biomass to be reproduced even with gross over- or underestimation of 81 

phytoplankton turnover times.  Similarly, even a model that is validated against satellite Chl and 82 

net primary production might completely misrepresent the proportion of phytoplankton mortality 83 

mediated by zooplankton groups, leading to inaccurate estimates of secondary production. Hence, 84 

validating PBMs against zooplankton dynamics is key to increasing confidence in model solutions. 85 

The importance of this validation is further witnessed when considering the impact zooplankton 86 

have on the behavior of biogeochemical models (Everett et al., 2017). Differences in simulated 87 

zooplankton communities expressed through the number of functional types, various mathematical 88 

grazing functional responses, and the arrangement of transfer linkages have been shown to have 89 

substantial impacts on simple and complex biogeochemical model solutions (Gentleman et al., 90 

2003; Gentleman and Neuheimer, 2008; Mitra et al., 2014; Murray and Parslow, 1999; Sailley et 91 

al., 2013).  92 

The Gulf of Mexico (GoM) is a particularly suitable study region for examining zooplankton 93 

dynamics with PBMs. In the northern and central Gulf, zooplankton abundance has been 94 

extensively measured for over three decades (1982-present) by the Southeast Area Monitoring and 95 

Assessment Program (SEAMAP). Within the SEAMAP dataset, measured zooplankton abundance 96 

exhibits strong spatiotemporal variability, due to complex physical circulation features within the 97 

GoM. The circulation in regions off the shelf is characterized by substantial upper layer mesoscale 98 
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activity driven primarily by the energetic Loop Current (Forristall et al., 1992; Maul and Vukovich, 99 

1993; Oey et al., 2005). In contrast, coastal and shelf circulation patterns are predominantly wind-100 

driven (Morey et al., 2003a, 2013). Freshwater discharged by the Mississippi River and other 101 

smaller rivers is frequently entrained offshore by shelf break interaction with mesoscale features 102 

(e.g., anti-cyclonic loop current eddies), leading to strong horizontal and vertical gradients in 103 

physical and biogeochemical quantities (Morey et al., 2003b). These gradients overlap with the 104 

SEAMAP study region resulting in zooplankton biomass sample collection across 105 

biogeochemically heterogeneous and “patchy” environments which provides a powerful model 106 

constraint. For instance, Chl can range across approximately three orders-of-magnitude (~0.01 – 107 

10 mg Chl m-3) from oligotrophic to eutrophic waters. Similarly, mesozooplankton (> 202 μm) 108 

biomass is highly variable ranging from 0.1 – 160 mg C m-3 in the SEAMAP dataset.  109 

Several PBM studies have been conducted in the GoM, all primarily examining nutrient and 110 

phytoplankton dynamics. Early work by Fennel et al. (2011) examined phytoplankton dynamics 111 

on the Louisiana and Texas continental shelf, concluding that loss terms (e.g., grazing) rather than 112 

growth rates dictated accumulation rates of phytoplankton biomass. With the same biogeochemical 113 

model, Xue et al. (2013) conducted the first gulf-wide PBM study to investigate broad seasonal 114 

biogeochemical variability and used the model to constrain a nitrogen budget for the shelf. More 115 

recently, Gomez et al. (2018) implemented a biogeochemical model with multiple phytoplankton 116 

and zooplankton functional types to gain a more detailed understanding of nutrient limitation and 117 

phytoplankton dynamics in the GoM. To examine phytoplankton seasonality and biogeography in 118 

the oligotrophic Gulf, Damien et al. (2018) validated a PBM based on a unique subsurface 119 

autonomous glider dataset. Together, these studies have demonstrated the utility of PBMs for 120 

investigating the GoM lower trophic level and have also highlighted the key role zooplankton play 121 

in the ecosystem. Specifically, both Fennel et al. (2011) and Gomez et al. (2018) identified the 122 

importance of zooplankton in modulating the simulated seasonal patterns of phytoplankton 123 

biomass, emphasizing the importance of top-down control on the shelf. Although results on the 124 

simulated zooplankton community were not presented, Damien et al. (2018) noted that biotic 125 

processes such as grazing pressure, are “essential to fully understanding the functioning of the 126 

GoM ecosystem.” However, in these studies zooplankton validation is largely absent.  127 
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In this study, we configured a PBM for the GoM to estimate zooplankton abundance and analyze 128 

zooplankton community dynamics. The PBM is forced by three-dimensional hydrodynamic fields 129 

from a data assimilative Hybrid Coordinate Ocean Model (HYCOM) hindcast of the GoM 130 

(http://www.hycom.org). The PBM is based on the biogeochemical model NEMURO (North 131 

Pacific Ecosystem Model for Understanding Regional Oceanography; Kishi et al., 2007), which is 132 

substantially modified here for application to the GoM. The model is integrated over 20-years 133 

(1993-2012) and validated extensively against a combination of remote and in situ measurements 134 

including total mesozooplankton biomass, size-fractionated mesozooplankton biomass and 135 

grazing rates,  microzooplankton specific grazing rates, surface Chl, deep Chl maximum depth, 136 

phytoplankton specific growth rates, and net primary production. The goals of this study were to: 137 

1) develop and validate a PBM to estimate mesozooplankton abundance in the GoM, 2) 138 

characterize the spatiotemporal variability in mesozooplankton dietary composition, and 3) 139 

quantify regional mesozooplankton secondary production. We focus primarily on the oligotrophic, 140 

open ocean GoM where prey (i.e. zooplankton) availability may be limiting for fish, their larvae, 141 

and other higher trophic levels. 142 

2 Methods and data 143 

2.1 Ocean model framework 144 

2.1.1 Biogeochemical model description 145 

The biogeochemical model for this study is based on NEMURO (Kishi et al., 2007) but has been 146 

modified and parameterized to more accurately reflect the ecology of the GoM. NEMURO is a 147 

concentration-based lower trophic level ecosystem model originally developed and parameterized 148 

for the North Pacific. Like most marine biogeochemical models, it is structured around simplified 149 

representations of the lower food web originating from earlier nutrient-phytoplankton-zooplankton 150 

models (Fasham et al., 1990; Franks, 2002; Riley, 1946; Steele and Frost, 1977). Complexity is 151 

added through additional state variables and transfer functions with the specific goal of resolving 152 

dynamics within the nutrient, phytoplankton, and zooplankton pools. In total, NEMURO has 153 

eleven state variables: six non-living state variables – nitrate (NO3), ammonium (NH4), dissolved 154 

organic nitrogen (DON), particulate organic nitrogen (PON), silicic acid (Si(OH)4), and particulate 155 

silica (Opal); two phytoplankton state variables – small (SP) and large phytoplankton (LP); and 156 

three zooplankton state variables – small (SZ), large (LZ) and predatory zooplankton (PZ).  157 
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Each biological state variable in NEMURO is an aggregated representation of taxonomically 158 

diverse plankton groups that function similarly in the ecosystem. The phytoplankton community 159 

in NEMURO is modeled as two functional types of obligate autotrophs: small phytoplankton (SP, 160 

predominantly cyanobacteria and picoeukaryotes in the GoM) and large phytoplankton (LP, 161 

diatoms). Small zooplankton (SZ) represent heterotrophic protists. Metazoan zooplankton are 162 

divided into suspension-feeding mesozooplankton (LZ) and predatory zooplankton (PZ), which 163 

also feed on LP and SZ. Here we assume that LZ and PZ are non-migratory. Heterotrophic bacteria 164 

are implicitly represented in NEMURO by temperature-dependent decomposition rates, which 165 

represent nitrification and remineralization. Sinking in NEMURO is restricted to PON and Opal 166 

pools, and benthic processes are not included. Here, because of the large shelf area in the GoM, 167 

we implemented a simple diagenesis of PON/OP to NO3/SiO4 and removal of PON/OP through 168 

sedimentation, where 1% of the flux sinking out of bottom cell was removed and 10% converted 169 

back into NO3/SiO4. However, we found that this had no significant impact on the model. 170 

NEMURO uses nitrogen as a model “currency” since it is the major limiting macronutrient in 171 

much of the ocean. Silica is also included as a potentially co-limiting nutrient for diatoms. For 172 

more details on the specific processes represented and the interactions between state variables in 173 

NEMURO, we direct readers to Kishi et al. (2007). All model equations are provided in the 174 

Supplement to this manuscript. 175 

NEMURO was chosen for the present study because it distinguishes SZ, LZ, and PZ, permitting a 176 

detailed analysis of dynamics within the GoM zooplankton community and allowing for 177 

investigation of multiple zooplankton functional types. In initial GoM simulations, we found that 178 

default NEMURO parameterizations for the North Pacific (Kishi et al., 2007) substantially 179 

overestimated both surface Chl and mesozooplankton biomass relative to observations. To a first 180 

order, we attribute these differences to: 1) substantially higher temperatures in the GoM compared 181 

with the North Pacific, which significantly increase decomposition and growth rates in the model 182 

resulting in higher nutrient recycling and sustained elevated standing stocks of phytoplankton and 183 

zooplankton near the surface, and 2) distinct differences in taxonomic composition of the 184 

phytoplankton and zooplankton communities between the GoM and North Pacific with significant 185 

differences in key parameter values associated with growth and grazing. Justification for each 186 

parameter modification and steps of the model tuning process are outlined in Supplement S2, with 187 
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a summary of parameter values in Table S2. Biogeochemical model forcing, initial, and open 188 

boundary conditions are also outlined in Supplement S1. 189 

2.1.2 Modifications to the original biogeochemical model  190 

To improve realism for application to the GoM, a total of five structural changes were made to the 191 

original NEMURO transfer functions. First, we removed the SP to LZ grazing pathway. The 192 

original SP state variable for the North Pacific represents nanophytoplankton (e.g. 193 

coccolithophores), which can be important prey of copepods and other mesozooplankton. In the 194 

GoM, however, cyanobacteria and picoeukaryotes (too small for direct feeding by most 195 

mesozooplankton) comprise much of the phytoplankton biomass and hence are represented as SP 196 

in our model. In addition to adding realism, this change in direct trophic connection between SP 197 

and LZ allowed the model to produce a more realistic LP dominated phytoplankton community on 198 

the shelf (see Discussion). 199 

Next, quadratic mortality was replaced with linear mortality for all biological state variables with 200 

the exception of predatory zooplankton (PZ). In biogeochemical models, quadratic mortality is 201 

often used for numerical stability and/or to represent implicit loss terms to an un-modeled parasite 202 

or predator that may covary in abundance with its prey (e.g. viral lysis of phytoplankton or 203 

predation by un-modeled higher predators). However, grazing mortality is explicitly modeled in 204 

NEMURO and viral mortality is generally not a substantial loss term for bulk phytoplankton 205 

(Brum et al., 2014; Staniewski and Short, 2018). Quadratic mortality was retained for PZ, to 206 

account for predation pressure of un-modeled planktivorous fish. We found that removal of 207 

quadratic mortality for all other biological state variables led to more realistic mesozooplankton 208 

biomass in the oligotrophic region (see Discussion). 209 

The default ammonium inhibition term and light limitation functional form was replaced with a 210 

more widely adopted parameterization. The exponential ammonium inhibition term in the nitrate 211 

limitation function was replaced with the term described by Parker (1993), as has been done in 212 

previous PBM studies (Fennel et al., 2006) due to the non-monotonic behavior of the default 213 

NEMURO ammonium inhibition term. The default light limitation functional form was replaced 214 

with the Platt et al. (1980) functional form that explicitly parameterizes photoinhibiton. This 215 

formulation is implemented in newer versions of NEMURO, such as the code used in the Regional 216 
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Ocean Modeling System (ROMS) NEMURO biogeochemical package. Finally, to account for 217 

photoacclimation and more accurately simulate Deep Chlorophyll Maximum (DCM) dynamics, 218 

we replaced the constant C:Chl parameter with a variable C:Chl module where ratios for SP and 219 

LP were allowed to vary based on the formulation described by Li et al. (2010), which considers 220 

both light and nutrient limitation (see Supplemental). Herein, “default” NEMURO includes the 221 

modified ammonium inhibition, light formulation and variable C:Chl model. 222 

In total NEMURO has 75 parameters, 25 of which were modified in the present study. To tune 223 

these parameters, we evaluated the model based on three observational benchmarks: surface Chl 224 

estimated from seaWIFS, depth averaged mesozooplankton biomass from the SEAMAP dataset, 225 

and DCM depth from the SEAMAP dataset. Chl and mesozooplankton biomass were chosen to 226 

evaluate basin scale variability in plankton biomass while the DCM depth was chosen to evaluate 227 

the vertical structure of the simulated ecosystem. We also considered expected patterns of size 228 

structured phytoplankton community composition (i.e. SP:LP ratio), relative magnitudes of total 229 

zooplankton grazing contributions, and the magnitude of loss terms for phytoplankton (grazing, 230 

mortality, respiration, and excretion). Initial model tuning was carried out in an idealized one-231 

dimensional model before being implemented into the PBM. We outline each parameter change, 232 

justification, and the resulting impact on the ecosystem benchmarks simulated by the one-233 

dimensional model in Supplement Table S1. Where possible, we modified parameters in groups 234 

so that relative changes were consistent throughout the model (e.g. doubling all zooplankton 235 

mortality terms). We also conducted a parameter sensitivity analysis to identify impacts of 236 

parameter changes on the final three-dimensional PBM solution (herein referred to as NEMURO-237 

GoM) (Section 2.6).  238 

2.1.3 Description of the offline numerical environment 239 

To run large numbers of three-dimensional simulations efficiently for basin scale tuning, the 240 

NEMURO-GoM was run offline using the MITgcm offline tracer advection package, which was 241 

selected for this study as it has convenient packages for running offline simulations (McKinley et 242 

al., 2004). That is, the dynamical equations of motion are not computed during the NEMURO-243 

GoM integration, but rather the physical prognostic variables (i.e., temperature, salinity, and three-244 

dimensional velocity fields) are prescribed from daily-averaged flow fields saved from a previous 245 

hydrodynamic model integration. This allows the recycled use of flow fields leaving only the tracer 246 
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equations to be computed. In the offline MITgcm package, the prognostic variables provide input 247 

to an advection scheme and mixing routine that conservatively handles offline advection and 248 

diffusion of the biogeochemical tracer fields. MITgcm has many options for linear and non-linear 249 

advection schemes. Here we use a 3rd order direct space time flux limiting scheme. Sub grid-scale 250 

mixing of the biogeochemical fields is handled offline through the nonlocal K-Profile 251 

Parameterization (KPP) package based on mixing schemes developed by Large et al. (1994). For 252 

more information about the MITgcm packages, we direct readers to the MITgcm manual 253 

(http://mitgcm.org/).  254 

Advantages of running PBMs in an offline environment include: 1) the physical time step in an 255 

offline environment is no longer bound by the dynamical Courant–Friedrichs–Lewy numerical 256 

stability criterion, allowing for longer time steps and fewer iterations; and 2) momentum equations 257 

are not computed during the integration. Instead, the stability of the tracer advection scheme and 258 

time scales needed to resolve biological/physical processes of interest set the limits on the time 259 

steps and prescription frequencies of flow fields. When the physical time step is shorter than the 260 

flow field prescription frequency, a simple linear interpolation of the flow fields is performed 261 

inside the PBM between time steps. It is important to note that offline simulations of tracer 262 

advection have been found to closely resemble online runs (that is, computed together with the 263 

integration of the hydrodynamic model’s prognostic equations) when the three-dimensional flow 264 

fields are prescribed at a frequency that is at or below the inertial period for a region (Hill et al., 265 

2005). 266 

In the present study, the NEMURO-GoM time step (30 minutes) is an order of magnitude greater 267 

than the hydrodynamic model’s (H-GoM, described in Section 2.1.4) baroclinic time step (120 268 

seconds). For reference, the 20-year H-GoM simulation that supplied flow fields for the offline 269 

NEMURO-GoM took a total of ~76 days to run to completion on 64 parallel cores. These time 270 

requirements would increase considerably with the 11 additional biogeochemical tracers used in 271 

NEMURO. In contrast, NEMURO-GoM including the 11 added tracers, ran significantly faster, 272 

taking a total of ~50 h on 80 parallel cores. While computationally advantageous, it is important 273 

to note that offline simulations inherently have greater input and output (I/O) demands that can 274 

become bottlenecks in some applications.  275 
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2.1.4 Description of the ocean dynamical fields 276 

The NEMURO-GoM is “forced” by daily averaged three-dimensional velocity, temperature, and 277 

salinity fields from a preexisting 20-year (1993-2012) HYCOM (HYbrid Coordinate Ocean 278 

Model) (Chassignet et al., 2003) regional GoM hindcast (H-GoM). H-GoM is based on version 279 

2.2.99B of the HYCOM code, originally provided by the Naval Oceanographic Office 280 

(NAVOCEANO) Major Shared Resource Center. H-GoM was run at 1/25th (~4 km) degree 281 

horizontal resolution with 36 vertical hybrid coordinate layers and assimilated historic, in situ, and 282 

satellite observations. The domain encompasses the entire GoM and extends south of the Mexican-283 

Cuba Yucatan channel to 18 °N and as far east as 77 °W (Fig. 1). Further details on H-GoM 284 

(experiment ID: GOMu0.04/expt_50.1) including details on model forcing and the main model 285 

configuration file (i.e. blkdat.input_501) can be found at https://www.hycom.org.  286 

The H-GoM flow fields were mapped from the HYCOM native vertical coordinate to z-levels used 287 

by the MITgcm. The NEMURO-GoM was configured for 29 vertical z-levels in MITgcm (10-m 288 

intervals from 0-150 m, 25-m intervals from 150-300 m, 50-m intervals from 300-500m, and 1000 289 

m, 2000 m, ~4000 m).  Mapping is performed by computing total zonal and meridional transports 290 

across the lateral boundaries of each MITgcm grid cell (e.g., 0-10 m bin; which may include 291 

multiple HYCOM layers) and then dividing by the area of the respective cell face. This vertical 292 

mapping approach is consistent as both HYCOM and MITgcm use an Arakawa C-grid orientation 293 

for model variables. The H-GoM bathymetry was adjusted such that no partial cells existed in the 294 

domain to avoid thin cells. The continuity equation was subsequently used to calculate vertical 295 

velocities. The use of transports in this approach ensures conservation and approximately identical 296 

profiles of vertical velocity to those in H-GoM fields. For mapping of temperature and salinity 297 

fields (used in the KPP mixing routine and for scaling biological temperature dependent rates) a 298 

simple linear interpolation was performed.  299 

 300 

2.2 Model validation 301 

2.2.1 SeaWIFS observations used for model validation 302 

A benchmark for surface Chl was determined using the Sea-Viewing Wide Field-of-View Sensor 303 

(SeaWIFS) product from the Ocean Biology Processing Group (OBPG) of the National 304 

Aeronautics and Space Administration (NASA). The product used here is the mapped, level-3, 305 

daily, 9-km resolution product from 4 September 1997 to 10 December 2010 processed according 306 
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to the algorithm of Hu et al. (2012).  To compute model-data point-to-point comparisons, we take 307 

the corresponding daily averaged simulated surface Chl field and interpolate to the SeaWIFS grid 308 

before applying the daily cloud coverage mask corresponding to the matching SeaWIFS image. In 309 

total 4,291 daily images consisting of 22,244,513 non-zero Chl cell values (herein referred to 310 

seaWIFS measurements) were used to validate the PBM. Approximately 500-1200 daily model-311 

data point-to-point comparisons were made for each SeaWIFS grid cell. 312 

 313 

Figure 1 (A-E): Spatial and temporal coverage of all observational data sets used for model 314 

validation. Total number of non-zero SeaWIFS values from the level 3 product from 4 September 315 

1997 to 10 December, 2010 along with cruise sample locations collected during May, 2017 316 

(circles) and 2018 (triangles) (A). Total annual sampling of the SEAMAP surveys from 1983-2017 317 

(B) with samples overlapping with the PBM simulation period denoted in red. Total sample density 318 

within each 0.5° x 0.5° box (C). Total seasonal sampling (D). Number of years with at least one 319 

sample (E). 1000 m isobaths and coastline are denoted by black continuous lines.  320 
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2.2.2 SEAMAP observations used model validation  321 

To evaluate model mesozooplankton biomass estimates, we used zooplankton biomass data 322 

collected during SEAMAP surveys in the northern and central GoM. In total, 11,781 zooplankton 323 

tows were collected from 1983-2017 with two main annual surveys consisting of a spring offshore 324 

and fall shelf sampling grid (Fig. 1). These samples were used to generate a climatology which 325 

was used to compare with simulated mesozooplankton climatology. On average, SEAMAP 326 

surveys collected approximately 300 samples per year with a specific sampling array in the 327 

offshore surveys and more general spatial sampling coverage on the shelf. Of these samples, 6,835 328 

were used for direct point-to-point model-data comparisons. Zooplankton biomass samples were 329 

collected using standard gear consisting of a 61 cm diameter bongo frame fitted with two 333 μm 330 

mesh nets. This gear is fished in a double-oblique tow pattern from the surface down to 200 m or 331 

5 m off the bottom and back to the surface. During 82 tows in nearshore and oligotrophic regions, 332 

additional samples were collected using a 202 μm mesh net concurrently with the standard 333 μm 333 

mesh net. Of these samples roughly half were collected in the oligotrophic GoM. The average ratio 334 

between 333 and 202 samples (0.5093 + 0.12) was used to convert biomass measurements from 335 

the 333 μm mesh samples so that direct comparisons could be made with simulated 336 

mesozooplankton biomass estimates. In this study we consider SZ size to be < 200 μm, LZ size to 337 

be 0.2-1 mm, and PZ size to be 1-5 mm. Zooplankton biomasses from SEAMAP surveys were 338 

originally quantified as displacement volumes (DV). Carbon mass (CM) equivalents were 339 

subsequently calculated as log10(CM) = (log10(DV) +1.434)/0.820 (Wiebe, 1988; Moriarty and 340 

O’Brien, 2013). CM estimates were converted to model units (mmol N m-3) assuming Redfield 341 

C:N ratio. Simulated mesozooplankton model fields were similarly depth integrated to the bottom 342 

or 200 m to generate the model mesozooplankton biomass climatology or to the sample depth 343 

when performing point-to-point comparisons.  344 

Vertical depth profiles of Chl were also approximated at standard stations during SEAMAP 345 

surveys using a SeaBird WETStar pumped fluorometer attached to a CTD. These profiles were 346 

used to determine the depths of the fluorescence maxima, which were then compared directly to 347 

simulated DCM depths at corresponding times and locations. In total, 2,435 profiles were taken 348 

from 2003-2012, with 1,052 profiles overlying bottom depths >1000 m. Profiles were available 349 

for earlier SEAMAP surveys; however, no standard QA/QC protocol for fluorometer data was in 350 
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place prior to 2003. Model-data agreement for DCM magnitude could not be investigated as the 351 

fluorometer was not calibrated before each cruise.  352 

2.2.3 Process rate measurements used for model validation 353 

Although in situ rate measurements are made much less frequently than biological standing stock 354 

measurements, they offer very powerful constraints for validating the internal dynamics of a 355 

biogeochemical model (Franks, 2009).  Consequently, we made phytoplankton and zooplankton 356 

rate measurements on two cruises in the open ocean GoM in May 2017 and 2018 and used these 357 

measurements to validate the model (Fig. 1A). Since the cruise sampling does not overlap with 358 

our NEMURO-GoM simulation period, we sampled the model at corresponding locations and 359 

times of the year for all 20 years of the simulation to investigate model-data comparisons. On these 360 

cruises, we utilized a quasi-Lagrangian sampling scheme to investigate plankton dynamics in the 361 

oligotrophic GoM. Two drifting arrays (one sediment trap array and one in situ incubation array) 362 

were then deployed to serve as a moving frame of reference during ~4-day studies (“cycles”) 363 

characterizing the water parcel (Landry et al., 2009; Stukel et al., 2015).  During these cycles, we 364 

measured daily profiles of Chl, photosynthetically active radiation, phytoplankton growth rates 365 

and productivity, protistan grazing rates, and size-fractionated mesozooplankton biomass and 366 

grazing rates. 367 

Protistan grazing rates were measured using the two-point, “mini-dilution” variant of the 368 

microzooplankton grazing dilution method (Landry et al., 1984, 2008; Landry and Hassett, 1982).  369 

Briefly, one 2.8-L polycarbonate bottle was gently filled with whole seawater taken from six 370 

depths (from the surface to the depth of the mixed layer).  A second 2.8-L bottle was then filled 371 

with 33% whole seawater and 67% 0.2-μm filtered seawater. Both bottles were then placed in 372 

mesh bags and incubated in situ at natural depths for 24 h.  These experiments were conducted on 373 

each day of the ~4-day cycle.  After 24 h, the bottles were retrieved, filtered onto glass fiber filters, 374 

and Chl concentrations were determined using the acidification method (Strickland and Parsons., 375 

1972).  Net growth rates (k=ln(Chlfinal/Chlinit)) in each bottle were then determined relative to initial 376 

Chl samples.  Phytoplankton specific mortality rates resulting from the grazing pressure of protists 377 

were calculated as m = (kd – k0)/(1-0.33), where kd is the growth rate in the dilute bottle and k0 is 378 

the growth rate in the control bottle. Phytoplankton specific growth rates were calculated as μ = k0 379 

+ m. For additional details, see Landry et al. (2016) and Selph et al. (2016). Phytoplankton net 380 
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primary production was quantified at the same depths by H13CO3
- uptake experiments.  Triplicate 381 

2.8-L polycarbonate bottles and a fourth “dark” bottle were spiked with H13CO3
- and incubated in 382 

situ for 24 h at the same sampling depths as for the dilution experiments.  Samples were then 383 

filtered, and the 13C:12C ratios of particulate matter were determined by isotope ratio mass 384 

spectrometry.  385 

Size-fractionated mesozooplankton biomass and grazing rates were determined from daily day-386 

night paired oblique ring-net tows (1-m diameter, 202-μm mesh) to a depth of 110 m.  Upon 387 

recovery, the sample was anesthetized using carbonated water, split using a Folsom splitter, 388 

filtered through a series of nested sieves (5, 2, 1, 0.5, and 0.2 mm), filtered onto preweighed 200-389 

µm Nitex filters, rinsed with isotonic ammonium formate to remove sea salt, and flash frozen in 390 

liquid nitrogen.  In the lab, defrosted samples were weighed for total wet weight, and subsampled 391 

in duplicate (wet weight removed) for gut fluorescence analyses. The remaining wet sample was 392 

dried and subsequently reweighed and combusted for CHN analyses to determine total dry weight 393 

and C and N biomasses.  Gut fluorescence subsamples were homogenized using a sonicating tip, 394 

extracted in acetone, and measured for Chl and phaeopigments using the acidification method.  395 

The phaeopigment concentrations in the zooplankton guts were the basis for calculated grazing 396 

rates using gut turnover times based on temperature relationships for mixed zooplankton 397 

assemblages.   For additional details, see Décima et al. (2011) and Decima et al. (2016). 398 

2.3 Description of the parameter sensitivity experiments 399 

After validating the PBM, a parameter sensitivity analysis consisting of 18 numerical experiments 400 

was conducted to evaluate how robust the final model solution was to parameter changes.  For 401 

each experiment, the PBM was configured to simulate four years starting in January 2002. This 402 

time period was concurrent with SeaWIFS and SEAMAP sample coverage. Parameter sensitivity 403 

experiments were initialized from our standard NEMURO-GoM run at 1 January 2002. The PBM 404 

with each parameter change(s) was then allowed to spin up for one year. The last three years (i.e. 405 

2003-2005) were subsequently used for the parameter sensitivity analysis. Direct point-to-point 406 

comparisons were made between model estimates and observations at corresponding sample times 407 

and locations during the model integration. In total, 4,646,459 SeaWIFS Chl measurements, 741 408 

SEAMAP mesozooplankton tows, and 481 SEAMAP fluorescence profiles were used to evaluate 409 

model sensitivity. To better capture relative differences between model and observations across 410 
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coastal and oligotrophic GoM regions, a log10 transformation was applied to Chl and 411 

mesozooplankton biomass model-data comparisons before calculating Taylor and Target diagram 412 

statistics. Point-to-point model-data comparisons were also made using the 20-year PBM output, 413 

which included all available data (i.e. 22,244,513 SeaWIFS Chl measurements, 6,835 SEAMAP 414 

mesozooplankton tows, and 2,435 SEAMAP fluorescence profiles). Configurations for each 415 

parameter sensitivity experiment are outlined in Table S3. 416 

3.0 Results  417 

3.1 Regional phytoplankton biomass model-data comparisons  418 

Model surface Chl estimates demonstrate strong agreement with satellite observations (Fig. 2). 419 

Spatial covariance between SeaWIFS climatology and model surface Chl climatology (calculated 420 

with daily cloud cover mask applied) is found to be statistically significant (p < 0.01) with a 421 

correlation (ρ) of 0.72. When model estimates are compared to all 22,244,513 SeaWIFS 422 

measurements at corresponding times and locations (i.e. daily grid cell pairs), we find a ρ value of 423 

0.50 (p < 0.01). To facilitate more detailed model-data comparisons, the GoM domain was divided 424 

into an oligotrophic region (>1000 m bottom depth) and a shelf region (<1000 m bottom depth). 425 

In the oligotrophic region, the correlation between model-data daily grid cell pairs is significant 426 

but weak (ρ = 0.17, p < 0.01) as a result of relatively low large-scale spatial variability, and hence 427 

dominance at the mesoscale.  However, bias is quite low (-0.014 mg Chl m-3) equivalent to 10% 428 

of the observed mean. In the shelf region, the correlation is higher (ρ = 0.47, p < 0.01) yet the bias 429 

is greater (+0.90 mg Chl m-3) equivalent to 92% of the mean. Previous GoM studies have 430 

determined ρ values based on monthly averages and for reference we calculate them here. Based 431 

on 30-day averages we find a ρ value of 0.70 (p < 0.01) for the oligotrophic region and 0.26 (p < 432 

0.01) for the shelf region.  433 

In addition to resolving the dominant spatiotemporal variability, the model also captures the 434 

amplitude of the seasonal surface Chl signal reasonably well. In the oligotrophic region, the model 435 

accurately estimates the observed annual surface Chl minimum (Model: 0.065 + 0.005 vs. 436 

SeaWIFS: 0.065 + 0.007 mg Chl m-3) while slightly underestimating the observed annual 437 

maximum (Model: 0.47 + 0.15 vs. SeaWIFS: 0.75 + 0.55 mg Chl m-3). When model estimates for 438 

the entire oligotrophic region are taken into account (i.e. not restricted to satellite measurement 439 

locations and times), we find the annual minimum develops in early September while the annual 440 
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maximum develops in late January (Table 1). In the shelf region, greater model-data mismatch 441 

exists for surface Chl where the model overestimates the observed annual minimum by 15% 442 

(Model: 0.23 + 0.09 vs. SeaWIFS: 0.20 + 0.07 mg Chl m-3) and the observed annual maximum by 443 

102% (Model: 8.09 + 1.31 vs. SeaWIFS: 4.01 + 1.23 mg Chl m-3). Here, we find the annual surface 444 

Chl seasonal cycle is almost completely out of phase with the oligotrophic region with the annual 445 

minimum developing during early February and the annual maximum developing at the end of 446 

July (Table 1). 447 

 448 

Figure 2 (A-F): Comparison of surface chlorophyll (mg m-3) between SeaWIFS observations and 449 

model from 4 September 1997 to 10 December 2010. Average SeaWIFS chlorophyll (A). Average 450 

model estimated surface chlorophyll (B). Log10 of the average SeaWIFS chlorophyll (C). Log10 of 451 

the average model estimated surface chlorophyll (D). Time series of simulated 30-day average 452 
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surface chlorophyll (red) and SeaWIFS observations (black) for bottom depths >1000 m (E) and 453 

bottom depths <1000 m (F). The 1000 m isobaths and coastline are denoted by black lines. 454 

Table1: Average seasonal minimum and maximum values in the model (1993-2012) and the day 455 

of year in which they occur for surface chlorophyll (mg m-3), depth integrated phytoplankton 456 

biomass (mg C m-2), depth integrated net primary production (mg C m-2 d-1), depth integrated 457 

mesozooplankton biomass (mg C m-2), and depth integrated mesozooplankton secondary 458 

production (mg C m-2 d-1) calculated by spatially averaging daily fields over the oligotrophic 459 

region (upper half of table) and shelf region (lower half of table). Day of year values are in the 460 

format “day/month + days.” 461 

 Daily Field Value Day of Year  
Diagnostic (Oligotrophic) Annual Min. Annual Max. Day of Min. Day of Max. 
Surface Chlorophyll  0.09 + 0.005 0.27 + 0.06 9/9 + 23 1/29 + 13 
Phytoplankton Biomass  2300 + 130 3600 + 140 12/26 + 7 4/29 + 17 
Net Primary Production 290 + 70 1000 + 120 12/31 + 12 7/6 + 27  
Mesozooplankton Biomass 1000 + 40 1400 + 90 1/1 + 4  5/19 + 18 
Secondary Production 18 + 4 68 + 10 12/31 + 10 6/4 + 15 
Diagnostic (Shelf) Annual Min. Annual Max. Day of Min. Day of Max. 
Surface Chlorophyll  1.96 + 0.15 3.00 + 0.30 2/8 + 37 7/31 + 58 
Phytoplankton Biomass  3200 + 290 5200 + 440 1/1 + 9  7/18 + 11 
Net Primary Production 750 + 120  2000 + 220 12/31 + 8  7/21 + 14 
Mesozooplankton Biomass 670 + 70 1100 + 90 12/29 + 7 5/23 + 25 
Secondary Production 94 + 17 270 + 28 12/31 + 6  7/20 + 16  

 462 

The model also captures the vertical variability in phytoplankton biomass reasonably well, falling 463 

within one standard deviation of the observed data. When model estimates of DCM depth are 464 

compared to all 2,435 SEAMAP CTD casts at corresponding sample times and locations, we find 465 

a statistically significant correlation (ρ = 0.59, p < 0.01) with the observed maximum fluorescence 466 

depth. The observed DCM depth ranged from the surface to 143 m while model values show a 467 

similar variability ranging from the surface to 163 m.  In the oligotrophic region, we find the model 468 

overestimates the DCM (Model: 95 + 20 m vs. SEAMAP: 80 + 25 m) and has a ρ value of 0.38 (p 469 

< 0.01) with a bias of 15 m equivalent to 19% of the observed mean. In the shelf region, the model 470 
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also overestimates DCM depth (Model: 63 + 26 m vs. SEAMAP: 53 + 23 m) and has a ρ value of 471 

0.49 (p < 0.01) with a bias of 10 m equivalent to 19% of the observed mean.   472 

3.2 Regional zooplankton biomass model-data comparisons  473 

 474 

Figure 3 (A-E): Comparison of climatological depth-averaged mesozooplankton biomass (MZB, 475 

mmol N m-3) between SEAMAP observations (left) and model output (right). Monthly average 476 

MZB samples organized by month (A). Monthly variability is not representative of seasonality as 477 

sampling locations change between months. MZB from all SEAMAP tows (B). MZB 20-year 478 

model average (C). Log10 of SEAMAP MZB (D). Log10 of model MZB (E).  479 

Model mesozooplankton biomass (i.e. LZ + PZ) fields compare well with observations in both the 480 

oligotrophic and shelf region (Fig. 3). Spatial covariance between SEAMAP climatology and 481 

model climatology of depth-averaged mesozooplankton biomass is statistically significant (p < 482 

0.01) with a ρ value of 0.90. When model estimates were compared to SEAMAP tows at 483 

corresponding sample times and locations for the 6,835 measurements overlapping with the 484 

simulation period, the ρ value is 0.55 (p < 0.01). In the oligotrophic region, the model slightly 485 
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overestimates mesozooplankton biomass (Model: 4.09 + 1.82 mg C m-3 vs. SEAMAP: 3.52 + 3.44 486 

mg C m-3) with ρ value of 0.23 (p < 0.01) and bias of 0.57 mg C m-3 equivalent to 16% of the 487 

observed mean. Conversely, in the shelf region the model underestimates mesozooplankton 488 

biomass (Model: 17.40 + 13.58 mg C m-3 vs. SEAMAP: 20.91 + 24.62 mg C m-3), with a ρ value 489 

of 0.49 (p < 0.01) and a bias of -3.5 mg C m-3 equivalent to 17% of the observed mean. We note 490 

that model estimates and SEAMAP measurements also compare well with mesozooplankton 491 

biomass measurements (0.2-5 mm) obtained in the oligotrophic region from independent May, 492 

2017 and 2018 cruises (Model: 5.55 + 2.87 mg C m-3 vs. Cruise: 4.33 + 2.28 mg C m-3).  493 

Although seasonal cycles in the oligotrophic and shelf regions could not be derived from the 494 

SEAMAP dataset given the significant differences in sampling locations over the course of a year, 495 

we investigated model-data mismatches for each month. We find the model closely matches or 496 

slightly underestimates depth-averaged mesozooplankton biomass throughout most of the year, 497 

with the exception of January, May, and August (Fig. 3A). The greatest model-data mismatch 498 

occurs during the months of March, June, July, and December, where the model underestimates 499 

depth-averaged mesozooplankton biomass by approximately 35%. Unlike phytoplankton biomass, 500 

the total mesozooplankton biomass (i.e. depth-integrated) seasonality is similar in both regions of 501 

the GoM. In the oligotrophic region, the annual mesozooplankton biomass minimum (maximum) 502 

develops at the beginning of January (middle of May) while in the shelf region, the annual 503 

minimum (maximum) develops in late December (near the end of May) (Table 1). 504 

3.3 Phytoplankton growth and zooplankton grazing model-data comparisons 505 

To further constrain the phytoplankton and zooplankton community simulated by the PBM, we 506 

utilized in situ measurements of the planktonic community during Lagrangian process studies 507 

conducted on two cruises in the oligotrophic GoM during May 2017 and 2018. First, we compared 508 

the relative proportions of LZ and PZ biomass to four discrete size classes measured at sea (Fig. 509 

4A, C). In total, 40 oblique bongo net tows (16 in 2017 and 24 in 2018) sampled the oligotrophic 510 

GoM mesozooplankton community from near surface to a depth ranging from 100 - 135 m. When 511 

the model is sampled yearly corresponding to cruise measurement locations and day of the year, 512 

we find nearly identical size distributions when assuming that LZ approximates the smallest two 513 

size classes of mesozooplankton sampled (“small mesozooplankton”, 0.2-1.0-mm) and PZ 514 

approximates the largest two size classes (“large mesozooplankton”, 1.0-5.0 mm). In both 515 
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observations and model estimates approximately 40% and 60% of the mesozooplankton 516 

community is composed of LZ and PZ, respectively. In the field data, small mesozooplankton 517 

biomass varied from 33 to 46 % (median = 40%, at 95% C.I.), while model estimates of LZ 518 

biomass vary from 31 to 46% (median = 40%). Large mesozooplankton biomass in the field data 519 

varied from 54 to 67% (median = 60%), while model estimates of PZ biomass vary from 54 to 520 

69% (median = 60%). 521 

 522 

Figure 4 (A-D): A summary of field (black) and model (red) estimates of mesozooplankton size-523 

fractioned biomass and grazing rates. Mesozooplankton size-fractioned biomass as a percent of 524 

total biomass for each of the four size classes measured at sea in May, 2017 and 2018 (A). 525 

Corresponding mesozooplankton specific grazing rates for each of the four size classes (B). Field 526 

data aggregated into two size classes for direct comparison with model  biomass estimates for large 527 

(LZ) and predatory (PZ) mesozooplankton (C). Similarly, model data comparison of specific 528 
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grazing rates by large and predatory zooplankton to aggregated field estimates (D). Whiskers 529 

extend to 95% confidence interval. Outliers for model estimates are not shown. 530 

We also measured the specific grazing rates of each size class using the gut pigment approach.  531 

Field measurements showed that specific grazing rates consistently decreased with increasing 532 

mesozooplankton size-class (Fig. 4B).  To compare specific grazing rates in the model to field 533 

measurements (μg Chl mg C-1 d-1), we computed grazing on LP by LZ and PZ at each depth. 534 

Grazing terms were converted into units of Chl using the model estimated C:Chl ratio for LP before 535 

being depth-integrated to the corresponding net tow depth and normalized to simulated depth-536 

integrated LZ and PZ biomasses. We find that model mesozooplankton grazing estimates capture 537 

the general trend of decreased specific grazing rates with increasing mesozooplankton size (Fig. 538 

4D). However, the model overestimates grazing by small mesozooplankton while underestimating 539 

grazing by large mesozooplankton. In the field data, small mesozooplankton grazing varied from 540 

1.34 to 2.51 μg Chl mg C-1 d-1 (median = 1.85) while model estimates of LZ grazing rates vary 541 

from 3.64 to 8.14 μg Chl mg C-1 d-1 (median = 6.01). Field measurements of large 542 

mesozooplankton grazing varied from 0.76 to 1.44 μg Chl mg C-1 d-1 (median = 0.94), while model 543 

estimates of PZ grazing vary from 0.44 to 0.70 μg Chl mg C-1 d-1 (median = 0.58). In terms of total 544 

mesozooplankton grazing, average grazing in the field was found to be 1.38 + 0.59 μg Chl mg C-545 
1 d-1, while the model average is 2.99 + 2.20 μg Chl mg C-1 d-1. This model-data mismatch likely 546 

results from the fact that, as formulated in NEMURO, LZ and PZ do not necessarily reflect size 547 

classes of mesozooplankton, but rather functional types. In reality, there is substantial overlap 548 

between taxonomic groups with different functional roles and sizes (see Discussion). 549 

In addition to measuring the mesozooplankton community, specific phytoplankton growth rates 550 

and specific phytoplankton mortality due to microzooplankon grazing were measured at sea using 551 

the microzooplankon grazing dilution method, and net primary production (NPP) was measured 552 

with H13CO3
- uptake experiments. We find the model underestimates phytoplankton growth and 553 

microzooplankton grazing while overestimating NPP (Fig. 5A, B). This model-data mismatch may 554 

be driven in part by model errors in simulated vertical patterns of phytoplankton growth rates.  We 555 

note that model results consistently predict enhanced growth rates at the DCM, while the field 556 

measurements showed surface enhancement of growth rates or relatively constant growth rates 557 

with depth. We believe the collocation of high growth rates at the DCM estimated by the model 558 
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may reveal a fundamental issue with how biogeochemical models simulated DCM dynamics. This 559 

collocation could explain the lower specific growth rates despite higher NPP we find in the model 560 

(see Discussion).  561 

 562 

Figure 5 (A-C): Specific phytoplankton growth (μ, d-1) and microzooplankon grazing (m, d-1) 563 

between model (red) and field data (black) (A). Depth-integrated net primary production (mg C 564 

m-2 d-1) (B). The fraction of phytoplankton growth that is grazed by protists in the model and field 565 

data (C). Whiskers extend to the 95% confidence intervals. Outliers for model estimates are not 566 

shown. 567 

Phytoplankton specific growth rates in dilution experiments varied from 0.50 to 0.66 d-1 (median 568 

= 0.55 d-1) while model estimates of phytoplankton (SP+LP) specific growth rates are lower and 569 

vary from 0.13 to 0.27 d-1 (median = 0.21 d-1). In terms of microzooplankton grazing, field data 570 

varied from 0.19 to 0.55 d-1 (median = 0.39 d-1) while model estimates of SZ grazing are also lower 571 

and vary from 0.10 to 0.21 d-1 (median = 0.16 d-1). NPP estimates between model and data show 572 

better agreement where field data varied from 275.61 to 360.09 mg C m-2 d-1 (median = 321.44 mg 573 

C m-2 d-1) while model estimates vary from 189.75 to 741.04 mg C m-2 d-1 (median = 430.96 mg C 574 

m-2 d-1). Although we find the model underestimates specific phytoplankton growth and 575 

microzooplankton grazing rates, the relative proportion of NPP being consumed by protists 576 

compares reasonably well to field measurements (Fig. 5C). The proportion of NPP grazed in field 577 

data varied from 55% to 92% (median = 72%), while model estimates vary from 67% to 85% 578 

(median = 76%). Notably, the model average proportion of phytoplankton production consumed 579 

by protists closely matches the mean for all tropical waters reported by Calbet & Landry (2004). 580 

https://doi.org/10.5194/bg-2019-463
Preprint. Discussion started: 9 December 2019
c© Author(s) 2019. CC BY 4.0 License.



 24 

When specific phytoplankton mortality due to mesozooplankton grazing was calculated at cruise 581 

sample locations, we find that mesozooplankton grazing accounts for 13 + 8 % which also closely 582 

agrees with the global average (Calbet et al., 2001).  583 

3.4 Parameter sensitivity analysis 584 

To evaluate model sensitivity, we investigated the impact of parameter changes on model estimates 585 

over the entire GoM domain and the oligotrophic region, specifically. The separate analysis of the 586 

oligotrophic region was undertaken for two reasons: 1) this region is an area where low 587 

mesozooplankton biomass likely leads to particularly strong prey limitation for fish, their larvae, 588 

and other higher trophic levels and 2) the substantially higher biomass and variability on the shelf 589 

dominates region-wide mean estimates. In comparison to default NEMURO, the NEMURO-GoM 590 

produces estimates of surface Chl, depth averaged mesozooplankton biomass, and DCM depth that 591 

more closely agree with observations (Fig. 6). During the parameter sensitivity experiments 592 

SEAMAP observations in the oligotrophic region were almost always located near the Loop 593 

Current which is strongly influenced by the southern open boundary condition. Hence, differences 594 

between simulations were difficult to quantify. Additionally, since mesozooplankton biomass 595 

observations is a depth averaged metric differences between simulations can appear small despite 596 

extreme differences in the vertical distribution of biomass.  597 

All parameter sensitivity experiment configurations are outlined in Supplement Table S3. Of the 598 

18 sensitivity experiments, the greatest model overestimation of surface Chl occurs when default 599 

α values (slope of the photosynthesis-irradiance curve) are included in NEMURO-GoM (Fig. 6A-600 

D). In default NEMURO, SP and LP α values are an order of magnitude lower (0.01). When default 601 

α values are included in the NEMURO-GoM, they restrict the depth range where phytoplankton 602 

can grow, resulting in substantially shallower DCM depths than observed. Subsequently, the 603 

nitracline becomes unrealistically shallow (~25 m in the oligotrophic region), allowing nutrients 604 

to mix readily into surface water and support higher phytoplankton biomass. The greatest model 605 

underestimation of surface Chl occurs when default quadratic mortality is implemented in the 606 

NEMURO-GoM. Although quadratic mortality tends to increase the lower limit of phytoplankton 607 

biomass, it also increases zooplankton standing stocks which, in this case, allows zooplankton to 608 

graze phytoplankton to unrealistically low levels. We find the exact opposite is true for 609 

mesozooplankton biomass. The greatest overestimation of depth-averaged mesozooplankton 610 
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biomass occurs when default quadratic mortality is included in the NEMURO-GoM. Conversely, 611 

when default α values are included we find the largest underestimation of mesozooplankton 612 

biomass as a result of low phytoplankton biomass at depth (Fig. 6E-H).  613 

 614 

Figure 6 (A-J): Taylor and Target diagrams comparing 18 parameter sensitivity experiments 615 

(black dots) against observations of surface Chl (top left, A-D) depth-averaged mesozooplankton 616 

biomass (top right, E-H) and deep chlorophyll maximum depth (bottom center, I & J). Each panel 617 

contains Taylor diagrams (left) and Target diagrams (right). The top two panels are further divided 618 

based on analysis of all data (top) and with bottom depths > 1000 m (bottom). The red arc in Taylor 619 

diagrams signifies the standard deviation of all observations in the last three years of the four-year 620 

parameter sensitivity experiments (2002-2006). A log10 transform is applied to surface chlorophyll 621 

and depth-averaged mesozooplankton before computing model-data statistics. 622 
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We also investigated the influence of parameter changes on simulated DCM depth (Fig. 6I, J). For 623 

this analysis, we did not isolate the oligotrophic region because average DCM depth does not vary 624 

as substantially as biomass between the shelf and oligotrophic regions (i.e., the shelf does not 625 

dominate the region-wide signal). In contrast to surface Chl and mesozooplankton biomass, default 626 

mortality does not strongly influence DCM depth. However, when default α values are included, 627 

the model substantially underestimates the actual DCM depth and the standard deviation of DCM 628 

depth as expected. In the NEMURO-GoM, tuned values lead to substantial improvement in DCM 629 

depth, with a standard deviation quite close to observations and a substantially improved ρ value 630 

(Fig. 6I). However, the tuned parameter set results in a small positive bias in DCM depth (i.e., 631 

deeper than measured DCM by ~10 m), although this was less significant than the negative bias in 632 

DCM depth of default NEMURO (i.e., shallower DCM than observations by ~25 m). 633 

3.5 Simulated mesozooplankton diet and secondary production 634 

Trophic level estimates provide a measure of the cumulative diet for mesozooplankton. We 635 

estimated mesozooplankton trophic level in the model by computing the dietary contributions of 636 

each prey in LZ (i.e. LP and SZ) and PZ diets (i.e. LP, SZ, and LZ) while assuming that the trophic 637 

level of LP = 1 and SZ = 2. In the oligotrophic region, both LP and SZ contribute approximately 638 

50% to LZ diet, as indicated by average LZ trophic level near 2.5 (2.54 + 0.02) (Fig. 7A). In the 639 

same region, PZ have a trophic level of 2.78 + 0.04 indicating a higher contribution of zooplankton 640 

to their diet (i.e. SZ and/or LZ) (Fig. 7B). In the shelf region, LZ are more herbivorous, as indicated 641 

by a decrease in trophic level to 2.31 + 0.01, while PZ are more carnivorous, as indicated by an 642 

increase in trophic level to 2.90 + 0.04. 643 

Although there is little evidence in the annual average for LZ diets dominated by zooplankton 644 

(trophic level ~3 as commonly found in PZ diets), we commonly find regions in instantaneous 645 

fields during both winter and summer where SZ are the dominant prey source for LZ (Fig. 7C, E). 646 

These regions, typically in the Loop Current or Loop Current Eddies (LCEs), highlight the episodic 647 

importance of heterotrophic protists as prey sources for small mesozooplankton in the GoM. High 648 

proportions of SZ in LZ diets can be attributed to the competitive advantage of SP over LP in 649 

extremely low nutrient environments such as in the Loop Current. Instantaneous fields also reveal 650 

that phytoplankton can be an important prey source for PZ as well. This is particularly the case 651 
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during summer, as indicated by trophic levels of around 2.5 in the western oligotrophic GoM (Fig. 652 

7F).  653 

 654 

Figure 7 (A-F): Trophic levels of simulated large zooplankton (LZ, top) and predatory 655 

zooplankton (PZ, bottom). Annual-average trophic positions of LZ (A) and PZ (D). Instantaneous 656 

trophic positions of LZ (B) and PZ (E) for winter conditions on 4 February 2012. Instantaneous 657 

trophic positions of LZ (C) and PZ (F) for summer conditions on 5 August 2011.  658 

In addition to strong variability in trophic positions, there are also regions in the oligotrophic GoM, 659 

most clearly in the centers of LCEs during summer, where the model predicts no feeding by 660 

mesozooplankton (Fig. 8E). The convergent anti-cyclonic circulation of LCEs is typically 661 

associated with low phytoplankton biomass, which at times may fall near or below feeding 662 

thresholds in the NEMURO grazing formulation. This formulation is designed to simulate 663 

suppression of feeding activity for zooplankton at mean prey densities that cannot support the 664 

energy expended while searching for prey.  665 
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666 

Figure 8 (A-F): Dominant prey source for simulated large zooplankton (LZ, top) and predatory 667 

zooplankton (PZ, bottom). Colors indicate which prey are dominant.  Brightness indicates percent 668 

of the dominant prey in the zooplankton diet.  Annual averaged field for LZ (A) and PZ (D). 669 

Instantaneous winter condition for LZ (B) and PZ (E) on simulated day 4 February 2012. 670 

Instantaneous summer conditions for LZ (C) and PZ (F) on 4 August 2011. 671 

To investigate which prey source contribute the most to LZ and PZ diets, we computed each prey 672 

source term for both LZ and PZ at each grid cell (Fig. 8). As we would expect, the dominant prey 673 

source for LZ and PZ closely aligns with the spatial variability in their respective trophic positions. 674 

For LZ diet, herbivory dominates throughout the GoM, except for the Loop Current (Fig. 8A). The 675 

LP contribution to LZ diet is highest on the shelf, where LP biomass is also high due to the 676 

competitive advantage LP have over SP in high nutrient conditions. In contrast, PZ diet varies with 677 

the relative availability of SZ and LZ prey. In the oligotrophic region, PZ feed mainly on SZ 678 

(heterotrophic protists), because LZ biomass is relatively low.  On the shelf, they consume 679 

primarily LZ (Fig. 8D). Despite the significant change in dominant prey between the shelf and 680 

oligotrophic regions, PZ trophic positions remain fairly consistent (Fig. 7D) because SZ in the 681 

oligotrophic region and LZ in the shelf region both feed predominantly on phytoplankton. In the 682 

instantaneous fields for winter (Fig. 8B, E) and summer (Fig. 8C, F), the dominant prey for both 683 

LZ and PZ show substantial mesoscale variability indicating that oceanographic features such as 684 

fronts and eddies influence not only zooplankton biomass but also their ecological roles. 685 
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686 

Figure 9 (A-F): Vertically integrated secondary production (mg C m-2 d-1) by simulated large 687 

zooplankton (LZ, top) and predatory zooplankton (PZ, bottom). Annual average of secondary 688 

production for LZ (A) and PZ (D). Instantaneous model output of secondary production in winter 689 

for LZ (B) and PZ (E) on simulated day 4 February 2012. Instantaneous model output for 690 

secondary production in summer for LZ (C) and PZ (F) on 2 August 2011.   691 

To our knowledge prior to the current study the regional secondary production for the GoM has 692 

yet to be quantified. In terms of the entire GoM, we find that secondary production averaged 66 + 693 

8 mt C yr-1 and ranged from a minimum of 51 mt C (in 1999) to a maximum of 82 mt C (in 2011).  694 

In the oligotrophic region, LZ secondary production averages 35 + 5 mg C m-2 d-1 while PZ 695 

secondary production is 11 + 2 mg C m-2 d-1 (Fig. 9). The annual secondary production minimum 696 

develops at the end of December while the annual maximum develops in the beginning of June 697 

(Table 1). In this region, mesozooplankton are responsible for 14 + 2 mt C yr-1, equivalent to 6% 698 

of NPP. In the shelf region, secondary production is about 4-fold higher, with LZ production of 699 

146 + 17 mg C m-2 d-1 and PZ production of 42 + 5 mg C m-2 d-1. Here, the annual minimum also 700 

develops at the end of December while the seasonal maximum occurs near the end of July (Table 701 

1). Secondary production in the shelf region averages 51 + 6 mt C yr-1 and is equivalent to 13% of 702 

NPP.  703 

4 Discussion 704 
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Many parameters in biogeochemical models are poorly constrained by observations and laboratory 705 

studies and/or highly variable in the environment. The numbers and uncertainties around these 706 

parameters allow PBMs with varying degrees of tuning to reproduce a single ecosystem attribute 707 

(e.g., surface Chl) even if multiple processes are inaccurately represented (Anderson, 2005; 708 

Franks, 2009). Once validated, one of the main values of coupling physical and biogeochemical 709 

models (i.e. PBMs) is their utility in making inferences about portions of the lower trophic level 710 

that are under sampled and/or difficult to measure in the field. If PBMs are to be utilized for 711 

explaining variability rather than just fitting an observational dataset, multiple ecosystem attributes 712 

must be validated and the underlying model structure and assumptions critically evaluated. In the 713 

section below, we further justify changes to model structure by evaluating the underlying 714 

assumptions in default NEMRUO and discuss model-data mismatch before drawing conclusions 715 

on the GoM zooplankton community and the implications of its dynamics on higher trophic levels.  716 

 717 

4.1 Justification for NEMURO modifications 718 

The phytoplankton community in the North Pacific (NP) domain where NEMURO was originally 719 

designed is largely composed of nanoplankton (i.e. original SP) and microplankton (i.e. original 720 

LP). By default, SP are assumed to represent coccolithophores and autotrophic nanoflagellates, 721 

which can be important prey of copepods and other mesozooplankton in temperate and subpolar 722 

regions (Kishi et al., 2007). However, in tropical regions such as the GoM, smaller 723 

picophytoplankton taxa typically dominate particularly in highly oligotrophic regions. Common 724 

picophytoplankton found in the GoM include cyanobacteria and picoeukaryotes which are too 725 

small for most mesozooplankton to feed on. Consequently, the SP to LZ grazing pathway was 726 

removed in the model. We found that removal of this grazing pathway allowed the model to 727 

simulate a more realistic phytoplankton community in the shelf region. Despite intuition, SP 728 

largely dominated the shelf region in the model when LZ were allowed to graze on SP. After closer 729 

inspection we found that grazing of SP sustained LZ biomass on the shelf to levels where top-730 

down pressure constrained LP standing stocks. This prevented large blooms of LP leading to a 731 

competitive advantage for SP even in highly eutrophic conditions (e.g. near the Mississippi river 732 

delta). We found this was true under a wide range of LP maximum growth rates, LP half saturation 733 

constants, and LZ/PZ grazing rates. Thus, removal of SP to LZ grazing pathway added ecological 734 

realism and improved the model solution. 735 
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During the model tuning process, we also found that despite a wide range of tested parameter sets 736 

the model (with default quadratic mortality formulation) was unable to simulate mesozooplankton 737 

biomass low enough to match SEAMAP observations in the oligotrophic region. Even with 738 

unrealistically low phytoplankton biomass, equivalent to approximately 50% of surface Chl 739 

observed in SeaWIFS images, the model overestimated mesozooplankton biomass. We found that 740 

to achieve realistic levels of mesozooplankton biomass in the oligotrophic region, default LZ and 741 

PZ mortality parameter values needed to be increased by an order of magnitude. However, this 742 

produced unrealistically high loss rates in the shelf region leading to mesozooplankton biomass 743 

estimates that were substantially lower than SEAMAP shelf observations. Implementation of 744 

linear mortality on all biological state variables (except PZ) resolved this issue by providing the 745 

model with greater dynamic range. In NEMURO, and other biogeochemical models, quadratic 746 

mortality is often used to increase model stability and/or is mechanistically justified as representing 747 

the impact of unmodeled predators that co-vary in abundance with prey (Gentleman and 748 

Neuheimer, 2008; Steele and Henderson, 1992). However, grazing losses of all state variables 749 

(except PZ), are already explicitly modeled in NEMURO by default. Hence, removal of quadratic 750 

mortality also added ecological realism and improved the model solution. Quadratic mortality was 751 

retained for PZ, to account for the implicit predation pressure of un-modeled planktivorous fish. 752 

4.2 Model-data mismatch 753 

The PBM in this study captures a wide range of key regional ecosystem attributes across multiple 754 

trophic levels. Surface Chl estimates were found to agree closely with satellite measurements, 755 

reproducing patterns in both the oligotrophic and shelf region. The latter of which, apart from the 756 

northern shelf, has not been well resolved by previous PBMs (e.g., Gomez et al., 2018; Xue et al., 757 

2013). The lack of a shelf Chl signature in previous studies may, in some cases, be overly attributed 758 

to bias in satellite measurement due to high concentrations of colored dissolved organic matter on 759 

the shelf. While a clear shelf signature is resolved in the NEMURO-GoM, we find greater model-760 

data mismatch on the shelf compared to oligotrophic regions. This is an expected finding when 761 

considering the model incorporates climatological river forcing while actual variability is in reality 762 

much more complex. Benthic processes that are not included in the NEMURO-GoM, such as 763 

denitrification (Fennel et al., 2006), may also contribute to model-data discrepancies in the shelf 764 

region.   765 
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The most noticeable surface Chl model-data mismatch occurs in the southern GoM on the 766 

Campeche Bank (CB) where the model consistently overestimates surface Chl. This 767 

overestimation was also notably present in the PBM implemented by Damien et al. (2018) for the 768 

GoM, particularly in winter.  We believe this discrepancy is driven by a combination of error in 769 

the hydrodynamic model associated with overestimation of shelf mixing and simulated nitraclines 770 

that are too shallow, which allows for unrealistic mixing of nitrate into surface waters. Nitrate 771 

profiles from the oligotrophic GoM during May 2017 and 2018 cruises (A. Knapp, pers. comm.) 772 

revealed concentrations are typically below detection limits at depths shallower than 100 m. 773 

However, nitracline depths estimated by the model were shallower than observed with an upper 774 

limit of approximately 80 m (DCM depth was ~100 m) in summer months. While this discrepancy 775 

has minimal impact on average surface Chl over most of the domain, significant model-data 776 

mismatch arises in persistent upwelling areas such as north of the Yucatan Peninsula. In this 777 

region, strong upwelling produces a thin filament of high Chl water that extends northward as 778 

frequently observed in satellite images. To the west, circulation on the CB is characterized by a 779 

westward flow. Together with the shallower simulated nitracline depths, we believe the regional 780 

circulation supplies the CB with excessive nutrient-rich water leading to an overestimation of Chl 781 

by the PBM.   782 

We found the model-data mismatch on the CB was reduced in parameter sets that produced 783 

nitracline depths down to 100 m. However, these parameter sets were less realistic in other ways 784 

(e.g. improbably deep DCMs). Given the strong thermal stratification and depth of the nitracline 785 

found in the GoM, we believe nitrogen fixing cyanobacteria may be another important source of 786 

new nitrogen (other than upwelling and mixing) supporting the surface phytoplankton community 787 

in the GoM. In the process of model tuning, we noticed that increasing the DON pool by increasing 788 

the PON to DON decomposition rate was necessary to maintain both relatively deep nitraclines 789 

and realistic surface Chl by providing a slow leeching of ammonium near the surface through 790 

bacterial communities. The need for this slow production of ammonium in surface layers may 791 

reflect the importance of nitrogen fixation, which is not included in NEMURO (Holl et al., 2007; 792 

Mulholland et al., 2006). In future studies including diazotrophs as a separate phytoplankton 793 

functional type would be valuable to investigate the importance of nitrogen fixation in the GoM. 794 
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Novel to this study, model estimates of mesozooplankton biomass were shown to agree closely 795 

with observations on the shelf and in the oligotrophic GoM. To our knowledge, this study provides 796 

the first quasi regional zooplankton biomass model-data comparisons in the GoM along with the 797 

first model-data comparisons of size-specific zooplankton biomass and grazing rates. Such 798 

comparisons provide the first insights into the potential biases of traditional biogeochemical 799 

models pertaining to zooplankton dynamics (Everett et al., 2017). While the PBM shows broad 800 

agreement with zooplankton observations, some model-data mismatch occurs, particularly for LZ 801 

grazing rates. Some of this discrepancy may arise from temporal sampling issues (rate 802 

measurements were only available for May 2017 and May 2018) or from inaccuracies in the field 803 

grazing measurements.  Due to phytodetrital aggregates and Trichodesmium colonies in the 804 

zooplankton net tows, our in situ gut pigment measurements were based solely on phaeopigment 805 

content.  True grazing rates were likely underestimated because undegraded Chl can be abundant 806 

in the foreguts of zooplankton. An additional source of model-data discrepancy arises from the 807 

fact that the NEMURO model formulation of LZ and PZ does not necessarily reflect a size class 808 

of mesozooplankton, but rather reflects a functional type of mesozooplankton. In reality, there is 809 

overlap between taxonomic groups with different functional roles and different sizes. 810 

Since most PBMs focus on validating against satellite-observed surface chlorophyll, the dynamics 811 

of the DCM is often insufficiently investigated. Consequently, many models predict DCM depths 812 

that are far too shallow.  Identifying this issue in the literature proved to be difficult seeing that 813 

most studies don’t provide profiles of simulated Chl. We note that DCM depths in the DIAZO 814 

model (Stukel et al., 2014) were often quite shallow or completely nonexistent in the portion of 815 

the domain that included the oligotrophic GoM region. Underestimates of DCM depth in the 816 

unmodified COBALT biogeochemical model has also been identified (Moeller et al., 2019). In our 817 

investigation of (Gomez et al., 2018) we found that DCMs in the oligotrophic region were 818 

commonly shallow and weak. In the default NEMURO simulation, DCM depths in the 819 

oligotrophic region were typically at a depth of 25 m, which is much shallower than SEAMAP 820 

observations in the region (80 + 25 m). While this issue may seem insignificant, particularly if a 821 

study is focused on mixed-layer dynamics, accurate placement of the DCM can have profound 822 

impacts on PBM behaviors, because the DCM is typically collocated with the nitracline. 823 

Unrealistically shallow DCMs and nitraclines permit unrealistically high nitrate fluxes into the 824 

surface layer following mixing events.  Indeed, we believe that a slight underestimation in 825 
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nitracline depth near the Yucatan Peninsula in our model contributed significantly to the model 826 

overestimation of surface Chl on the Campeche Bank.   827 

For these reasons, we devoted substantial effort to tuning phytoplankton dynamics at the DCM. 828 

Modifications to α (the slope of the photosynthesis-irradiance curve) and attenuation coefficients 829 

allowed us to move the DCM down to realistic depths.  However, an additional issue was present 830 

in the default NEMURO simulations, the NEMURO-GoM, and every simulation that we 831 

attempted.  In all simulations that formed DCMs, the location of the DCM was always collocated 832 

with a maximum in phytoplankton specific growth rate. However, our field measurements of 833 

phytoplankton growth rates and NPP were either relatively constant with depth or declined in the 834 

DCM.  This is not surprising, given the low photon flux at the base of the euphotic zone and the 835 

energetic demands required to upregulate cellular density of light harvesting pigments. However, 836 

in traditional PBMs high biomass DCM cannot form with a low growth rate, because specific 837 

mortality rates tend to co-vary with biomass even if (as in our model) quadratic mortality is not 838 

included.  839 

Phytoplankton mortality (in the model and in the observations) is dominated by zooplankton 840 

(particularly protists).  Since zooplankton abundance covaries with phytoplankton abundance and 841 

zooplankton specific grazing rates increase with increasing phytoplankton abundance, specific 842 

mortality must co-vary with abundance.  This means that phytoplankton mortality rates must be 843 

higher at the DCM biomass peak than in the surface layer and thus a DCM can only be maintained 844 

if growth rates are high.  We tested multiple options to try to maintain a DCM with low growth 845 

rates, including using light-dependent grazing formulations (Moeller et al., 2019), but found no 846 

parameterizations that could match the observations. We believe this DCM issue was responsible, 847 

in part, for the overestimates of LZ grazing rates (Fig. 4D).  The collocation of the biomass and 848 

growth rate maxima also lead to substantial overestimates of production (particularly by LP) at the 849 

DCM, which was then grazed by LZ.  Future modeling studies should focus more effort on 850 

dynamics of the DCM. 851 

4.3 Mesozooplankton dynamics in the open-ocean oligotrophic Gulf of Mexico 852 

Despite its nutrient-poor conditions, the open-ocean GoM ecosystem is a key region for spawning 853 

and larval development of many commercially important fishes, including Atlantic bluefin tuna, 854 
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yellowfin tuna, skipjack tuna, sailfish, and mahi mahi (Cornic and Rooker, 2018; Kitchens and 855 

Rooker, 2014; Lindo-Atichati et al., 2012; Muhling et al., 2017; Rooker et al., 2012, 2013).  Why 856 

so many species choose such oligotrophic waters as habitat for their larval stages is unknown, but 857 

may be due to reduced predation risk (Bakun, 2013; Bakun and Broad, 2003).  Regardless, rapid 858 

growth and survival through the larval period depends on mesozooplankton prey that are suitably 859 

abundant and appropriately sized for these larval fishes.  These prey taxa may be especially 860 

sensitive to increased stratification and oligotrophication associated with climate change, making 861 

investigation of their dynamics and production an important topic of research.  862 

Mesozooplankton biomass in the oligotrophic GoM was found to be strikingly low in both 863 

observations and PBM estimates with approximately an order of magnitude less biomass in 864 

comparison to the shelf. PBM results clearly show that this low biomass condition arises from 865 

bottom-up resource limitation.  Our results suggest that low phytoplankton biomass in oligotrophic 866 

regions, and particularly within Loop Current Eddies, may even lead to localized and episodic 867 

regions where mean concentrations approach thresholds for triggering collapse of 868 

mesozooplankton grazing. Prey limiting conditions for mesozooplankton and their predators 869 

would be expected to occur more frequently in the GoM during warmer ocean conditions. Higher 870 

sea surface temperatures and increased thermal stratification could suppress vertical mixing, 871 

resulting in lower phytoplankton biomass. Indeed, while NEMURO-GoM exhibits severe nutrient 872 

limitation in surface waters, the nitracline in the model is actually weaker and shallower than in 873 

situ measurements during our cruises (A. Knapp, pers. comm.).  This suggests potentially greater 874 

nutrient scarcity in surface waters than the model predicts.   875 

Despite extreme oligotrophy and dominance of picophytoplankton, our model shows that both PZ 876 

and LZ populations can be sustained at modest abundances in the oligotrophic GoM.  Indeed, the 877 

substantial abundances of large (>1-mm) mesozooplankton equivalent to 60% of total 878 

mesozooplankton, as determined by both observations and model results (Fig. 4A, C) is an 879 

important result that helps explain the success of larval fish in the region.  Our results show that 880 

large mesozooplankton (PZ) occupy a trophic position of approximately 3.0 in the open ocean 881 

GoM, which is marginally lower than on the shelf where they feed primarily on small 882 

mesozooplankton (LZ).  This change in trophic position is associated with a switch from carnivory 883 

to feeding predominantly on heterotrophic protists in the oligotrophic region. This result highlights 884 
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the importance of intermediate protistan trophic levels in sustaining mesozooplankton 885 

communities in oligotrophic regions. Indeed, both LZ and PZ are found to ingest proportionally 886 

more SZ in the open ocean than on the shelf.  Notably, these protistan trophic steps cannot be 887 

quantified by routine field techniques because they have no pigment signature to make them visible 888 

in gut pigment measurements and may not enrich in bulk 15N leading to isotopic invisibility from 889 

a trophic perspective (Gutiérrez-Rodríguez et al., 2014). Despite their importance, they are also 890 

often missing from GoM ecosystem models (e.g., Fennel et al., 2011) and severely 891 

underrepresented or even absent in complex mass-balance constrained models (Arreguin-Sanchez 892 

et al., 2004; Geers et al., 2016). (Arreguin-Sanchez et al., 2004; Geers et al., 2016). New insights 893 

may arise from focused investigation of phytoplanktonprotistcrustacean linkages in 894 

oligotrophic regions in both model and experimental studies.   This will likely require the use of 895 

next-generation technologies such as compound specific isotopic analyses of specific amino acids 896 

that have been shown to enrich in protists (Décima et al., 2017) or DNA metabarcoding to assess 897 

zooplankton gut contents (Cleary et al., 2016). 898 

Another robust result of our model is the dynamic mesoscale variability in zooplankton abundance, 899 

diet, and trophic position.  These results highlight the impact of Loop Current Eddies and 900 

mesoscale fronts and other features in modifying the biogeochemistry and food web of the GoM.  901 

The existence of hot spots of productivity in the GoM has been seen in observational studies (Biggs 902 

and Ressler, 2001), and the importance of GoM mesoscale features to fish larvae has been 903 

hypothesized (Domingues et al., 2016; Lindo-Atichati et al., 2012; Rooker et al., 2012).  Our 904 

results suggest that these mesoscale structures may not only modify zooplankton abundances, but 905 

also their trophic roles in the ecosystem, with implications for the transfer efficiencies of carbon 906 

and nitrogen in the pelagic food web.   907 

5.0 Conclusions 908 

In this study, we used an extensive suite of in situ measurements to validate zooplankton dynamics 909 

simulated by a PBM of the GoM. The model was able to capture broad patterns in phytoplankton 910 

and mesozooplankton abundances, depth of the deep chlorophyll max, and growth and grazing 911 

patterns.  However, a distinct discrepancy was found between vertical profiles of measured and 912 

modeled growth rates of phytoplankton.  Despite testing multiple parameterizations for 913 

phytoplankton growth and zooplankton grazing, no model solution was found that could simulate 914 
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a DCM with high biomass, but low growth rates.  Future research is needed to diagnose these 915 

dynamical issues for the DCM.  Once validated, the PBM was used to investigate important 916 

characteristics of the GoM mesozooplankton community. Our results suggest that small 917 

mesozooplankton are largely herbivorous and large mesozooplankton largely carnivorous on the 918 

GoM shelf. However, distinct changes in diet were noted in the oligotrophic GoM, where both 919 

groups rely more on protistan prey.  Changes in diet and secondary production highlighted in this 920 

study have the potential to impact food availability to higher trophic levels, such as pelagic larval 921 

fishes. In future work, we plan to couple our model to an individual-based model of larval fish to 922 

evaluate the extent to which food resources limit larval fish feeding and growth along their 923 

transport pathways in the GoM. Insights from this ecosystem-based approach may help to better 924 

resolve stock-recruitment relationship that are needed for sustainable fisheries management and 925 

improved stock-assessment models. 926 
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Code and data availability.  927 

The model code and model validation data used in this study can be downloaded from GitHub at 928 

https://github.com/tashrops/NEMURO-GoM. An idealized one-dimensional version of 929 

NEMURO-GoM written in Matlab is also provided. The three-dimensional NEMURO-GoM 930 

model outputs used in the study are available on the FSU-COAPS server in a Network Common 931 

Data Form (NetCDF format).  932 
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